The Snakemake API

snakemake.snakemake(snakefile, batch=None, cache=None, report=None, report_stylesheet=None, lint=None, generate_unit_tests=None, listrules=False, list_target_rules=False, cores=1, nodes=1, local_cores=1, resources={}, overwrite_threads=None, overwrite_scatter=None, default_resources=None, config={}, configfiles=None, config_args=None, workdir=None, targets=None, dryrun=False, touch=False, forcetargets=False, forceall=False, forcerun=[], until=[], omit_from=[], prioritytargets=[], stats=None, printreason=False, printshellcmds=False, debug_dag=False, printdag=False, printrulegraph=False, printfilegraph=False, printd3dag=False, nocolor=False, quiet=False, keepgoing=False, cluster=None, cluster_config=None, cluster_sync=None, drmaa=None, drmaa_log_dir=None, jobname='snakejob.{rulename}.{jobid}.sh', immediate_submit=False, standalone=False, ignore_ambiguity=False, snakemakepath=None, lock=True, unlock=False, cleanup_metadata=None, conda_cleanup_envs=False, cleanup_shadow=False, cleanup_scripts=True, force_incomplete=False, ignore_incomplete=False, list_version_changes=False, list_code_changes=False, list_input_changes=False, list_params_changes=False, list_untracked=False, list_resources=False, summary=False, archive=None, delete_all_output=False, delete_temp_output=False, detailed_summary=False, latency_wait=3, wait_for_files=None, print_compilation=False, debug=False, notemp=False, keep_remote_local=False, nodeps=False, keep_target_files=False, allowed_rules=None, jobscript=None, greediness=None, no_hooks=False, overwrite_shellcmd=None, updated_files=None, log_handler=[], keep_logger=False, wms_monitor=None, max_jobs_per_second=None, max_status_checks_per_second=100, restart_times=0, attempt=1, verbose=False, force_use_threads=False, use_conda=False, use_singularity=False, use_env_modules=False, singularity_args='', conda_frontend='conda', conda_prefix=None, conda_cleanup_pkgs=None, list_conda_envs=False, singularity_prefix=None, shadow_prefix=None, scheduler='ilp', scheduler_ilp_solver=None, conda_create_envs_only=False, mode=0, wrapper_prefix=None, kubernetes=None, container_image=None, tibanna=False, tibanna_sfn=None, google_lifesciences=False, google_lifesciences_regions=None, google_lifesciences_location=None, google_lifesciences_cache=False, tes=None, preemption_default=None, preemptible_rules=None, precommand='', default_remote_provider=None, default_remote_prefix='', tibanna_config=False, assume_shared_fs=True, cluster_status=None, export_cwl=None, show_failed_logs=False, keep_incomplete=False, keep_metadata=True, messaging=None, edit_notebook=None, envvars=None, overwrite_groups=None, group_components=None, max_inventory_wait_time=20, execute_subworkflows=True, conda_not_block_search_path_envvars=False)[source]

Run snakemake on a given snakefile.

This function provides access to the whole snakemake functionality. It is not thread-safe.

Parameters:
  • snakefile (str) – the path to the snakefile
  • batch (Batch) – whether to compute only a partial DAG, defined by the given Batch object (default None)
  • report (str) – create an HTML report for a previous run at the given path
  • lint (str) – print lints instead of executing (None, “plain” or “json”, default None)
  • listrules (bool) – list rules (default False)
  • list_target_rules (bool) – list target rules (default False)
  • cores (int) – the number of provided cores (ignored when using cluster support) (default 1)
  • nodes (int) – the number of provided cluster nodes (ignored without cluster support) (default 1)
  • local_cores (int) – the number of provided local cores if in cluster mode (ignored without cluster support) (default 1)
  • resources (dict) – provided resources, a dictionary assigning integers to resource names, e.g. {gpu=1, io=5} (default {})
  • default_resources (DefaultResources) – default values for resources not defined in rules (default None)
  • config (dict) – override values for workflow config
  • workdir (str) – path to working directory (default None)
  • targets (list) – list of targets, e.g. rule or file names (default None)
  • dryrun (bool) – only dry-run the workflow (default False)
  • touch (bool) – only touch all output files if present (default False)
  • forcetargets (bool) – force given targets to be re-created (default False)
  • forceall (bool) – force all output files to be re-created (default False)
  • forcerun (list) – list of files and rules that shall be re-created/re-executed (default [])
  • execute_subworkflows (bool) – execute subworkflows if present (default True)
  • prioritytargets (list) – list of targets that shall be run with maximum priority (default [])
  • stats (str) – path to file that shall contain stats about the workflow execution (default None)
  • printreason (bool) – print the reason for the execution of each job (default false)
  • printshellcmds (bool) – print the shell command of each job (default False)
  • printdag (bool) – print the dag in the graphviz dot language (default False)
  • printrulegraph (bool) – print the graph of rules in the graphviz dot language (default False)
  • printfilegraph (bool) – print the graph of rules with their input and output files in the graphviz dot language (default False)
  • printd3dag (bool) – print a D3.js compatible JSON representation of the DAG (default False)
  • nocolor (bool) – do not print colored output (default False)
  • quiet (bool) – do not print any default job information (default False)
  • keepgoing (bool) – keep goind upon errors (default False)
  • cluster (str) – submission command of a cluster or batch system to use, e.g. qsub (default None)
  • cluster_config (str,list) – configuration file for cluster options, or list thereof (default None)
  • cluster_sync (str) – blocking cluster submission command (like SGE ‘qsub -sync y’) (default None)
  • drmaa (str) – if not None use DRMAA for cluster support, str specifies native args passed to the cluster when submitting a job
  • drmaa_log_dir (str) – the path to stdout and stderr output of DRMAA jobs (default None)
  • jobname (str) – naming scheme for cluster job scripts (default “snakejob.{rulename}.{jobid}.sh”)
  • immediate_submit (bool) – immediately submit all cluster jobs, regardless of dependencies (default False)
  • standalone (bool) – kill all processes very rudely in case of failure (do not use this if you use this API) (default False) (deprecated)
  • ignore_ambiguity (bool) – ignore ambiguous rules and always take the first possible one (default False)
  • snakemakepath (str) – deprecated parameter whose value is ignored. Do not use.
  • lock (bool) – lock the working directory when executing the workflow (default True)
  • unlock (bool) – just unlock the working directory (default False)
  • cleanup_metadata (list) – just cleanup metadata of given list of output files (default None)
  • drop_metadata (bool) – drop metadata file tracking information after job finishes (–report and –list_x_changes information will be incomplete) (default False)
  • conda_cleanup_envs (bool) – just cleanup unused conda environments (default False)
  • cleanup_shadow (bool) – just cleanup old shadow directories (default False)
  • cleanup_scripts (bool) – delete wrapper scripts used for execution (default True)
  • force_incomplete (bool) – force the re-creation of incomplete files (default False)
  • ignore_incomplete (bool) – ignore incomplete files (default False)
  • list_version_changes (bool) – list output files with changed rule version (default False)
  • list_code_changes (bool) – list output files with changed rule code (default False)
  • list_input_changes (bool) – list output files with changed input files (default False)
  • list_params_changes (bool) – list output files with changed params (default False)
  • list_untracked (bool) – list files in the workdir that are not used in the workflow (default False)
  • summary (bool) – list summary of all output files and their status (default False)
  • archive (str) – archive workflow into the given tarball
  • delete_all_output (bool) remove all files generated by the workflow (default False) –
  • delete_temp_output (bool) remove all temporary files generated by the workflow (default False) –
  • latency_wait (int) – how many seconds to wait for an output file to appear after the execution of a job, e.g. to handle filesystem latency (default 3)
  • wait_for_files (list) – wait for given files to be present before executing the workflow
  • list_resources (bool) – list resources used in the workflow (default False)
  • summary – list summary of all output files and their status (default False). If no option is specified a basic summary will be ouput. If ‘detailed’ is added as an option e.g –summary detailed, extra info about the input and shell commands will be included
  • detailed_summary (bool) – list summary of all input and output files and their status (default False)
  • print_compilation (bool) – print the compilation of the snakefile (default False)
  • debug (bool) – allow to use the debugger within rules
  • notemp (bool) – ignore temp file flags, e.g. do not delete output files marked as temp after use (default False)
  • keep_remote_local (bool) – keep local copies of remote files (default False)
  • nodeps (bool) – ignore dependencies (default False)
  • keep_target_files (bool) – do not adjust the paths of given target files relative to the working directory.
  • allowed_rules (set) – restrict allowed rules to the given set. If None or empty, all rules are used.
  • jobscript (str) – path to a custom shell script template for cluster jobs (default None)
  • greediness (float) – set the greediness of scheduling. This value between 0 and 1 determines how careful jobs are selected for execution. The default value (0.5 if prioritytargets are used, 1.0 else) provides the best speed and still acceptable scheduling quality.
  • overwrite_shellcmd (str) – a shell command that shall be executed instead of those given in the workflow. This is for debugging purposes only.
  • updated_files (list) – a list that will be filled with the files that are updated or created during the workflow execution
  • verbose (bool) – show additional debug output (default False)
  • max_jobs_per_second (int) – maximal number of cluster/drmaa jobs per second, None to impose no limit (default None)
  • restart_times (int) – number of times to restart failing jobs (default 0)
  • attempt (int) – initial value of Job.attempt. This is intended for internal use only (default 1).
  • force_use_threads – whether to force use of threads over processes. helpful if shared memory is full or unavailable (default False)
  • use_conda (bool) – use conda environments for each job (defined with conda directive of rules)
  • use_singularity (bool) – run jobs in singularity containers (if defined with singularity directive)
  • use_env_modules (bool) – load environment modules if defined in rules
  • singularity_args (str) – additional arguments to pass to singularity
  • conda_prefix (str) – the directory in which conda environments will be created (default None)
  • conda_cleanup_pkgs (snakemake.deployment.conda.CondaCleanupMode) – whether to clean up conda tarballs after env creation (default None), valid values: “tarballs”, “cache”
  • singularity_prefix (str) – the directory to which singularity images will be pulled (default None)
  • shadow_prefix (str) – prefix for shadow directories. The job-specific shadow directories will be created in $SHADOW_PREFIX/shadow/ (default None)
  • wms-monitor (str) – workflow management system monitor. Send post requests to the specified (server/IP). (default None)
  • conda_create_envs_only (bool) – if specified, only builds the conda environments specified for each job, then exits.
  • list_conda_envs (bool) – list conda environments and their location on disk.
  • mode (snakemake.common.Mode) – execution mode
  • wrapper_prefix (str) – prefix for wrapper script URLs (default None)
  • kubernetes (str) – submit jobs to kubernetes, using the given namespace.
  • container_image (str) – Docker image to use, e.g., for kubernetes.
  • default_remote_provider (str) – default remote provider to use instead of local files (e.g. S3, GS)
  • default_remote_prefix (str) – prefix for default remote provider (e.g. name of the bucket).
  • tibanna (bool) – submit jobs to AWS cloud using Tibanna.
  • tibanna_sfn (str) – Step function (Unicorn) name of Tibanna (e.g. tibanna_unicorn_monty). This must be deployed first using tibanna cli.
  • google_lifesciences (bool) – submit jobs to Google Cloud Life Sciences (pipelines API).
  • google_lifesciences_regions (list) – a list of regions (e.g., us-east1)
  • google_lifesciences_location (str) – Life Sciences API location (e.g., us-central1)
  • google_lifesciences_cache (bool) – save a cache of the compressed working directories in Google Cloud Storage for later usage.
  • tes (str) – Execute workflow tasks on GA4GH TES server given by url.
  • precommand (str) – commands to run on AWS cloud before the snakemake command (e.g. wget, git clone, unzip, etc). Use with –tibanna.
  • preemption_default (int) – set a default number of preemptible instance retries (for Google Life Sciences executor only)
  • preemptible_rules (list) – define custom preemptible instance retries for specific rules (for Google Life Sciences executor only)
  • tibanna_config (list) – Additional tibanna config e.g. –tibanna-config spot_instance=true subnet=<subnet_id> security group=<security_group_id>
  • assume_shared_fs (bool) – assume that cluster nodes share a common filesystem (default true).
  • cluster_status (str) – status command for cluster execution. If None, Snakemake will rely on flag files. Otherwise, it expects the command to return “success”, “failure” or “running” when executing with a cluster jobid as single argument.
  • export_cwl (str) – Compile workflow to CWL and save to given file
  • log_handler (list) – redirect snakemake output to this custom log handler, a function that takes a log message dictionary (see below) as its only argument (default None). The log message dictionary for the log handler has to following entries:
  • keep_incomplete (bool) – keep incomplete output files of failed jobs
  • edit_notebook (object) – “notebook.Listen” object to configuring notebook server for interactive editing of a rule notebook. If None, do not edit.
  • scheduler (str) – Select scheduling algorithm (default ilp)
  • scheduler_ilp_solver (str) – Set solver for ilp scheduler.
  • overwrite_groups (dict) – Rule to group assignments (default None)
  • group_components (dict) – Number of connected components given groups shall span before being split up (1 by default if empty)
  • conda_not_block_search_path_envvars (bool) – Do not block search path envvars (R_LIBS, PYTHONPATH, …) when using conda environments.
  • log_handler

    redirect snakemake output to this list of custom log handler, each a function that takes a log message dictionary (see below) as its only argument (default []). The log message dictionary for the log handler has to following entries:

    level:the log level (“info”, “error”, “debug”, “progress”, “job_info”)
    level=”info”, “error” or “debug”:
     
    msg:the log message
    level=”progress”:
     
    done:number of already executed jobs
    total:number of total jobs
    level=”job_info”:
     
    input:list of input files of a job
    output:list of output files of a job
    log:path to log file of a job
    local:whether a job is executed locally (i.e. ignoring cluster)
    msg:the job message
    reason:the job reason
    priority:the job priority
    threads:the threads of the job
Returns:

True if workflow execution was successful.

Return type:

bool